| 120 | 1200 | 120

SEQUENCE LISTING

N0> Gorman, K.M.
Patterson, D.R.
Song, K.
Linnen, J.

<120> OLIGÒNUCLEOTIDE PRIMERS FOR EFFICIENT MULTIPDEX DETECTION OF HEPATITIS C VIRUS (HCV) AND HUMAN IMMUNODEFICIENCY VIRUS (HIV) AND METHODS OF USE THEREOF

<130> 2094/1E285-US1

<140> 09/494,332

<141> 2000-02-28

<150> 60/118,417

<151> 1999-02-02

<160> 17

<170> FastSEQ for Windows Version 3.

<210> 1

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 1

gggagagcca tagtggtctg cggaa

<210> 2

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide primer

<400> 2

cggggcactc gcaagcaccc tatca

<210> 3

25

25

<2	11> 30 12> DNA 13> Artificial Sequence	
<2 <2	20> 23 Oligonucleotide primer	
	00> 3 agc ctcaataaag cttgccttga	30
<2 <2	210> 4 211> 24 212> DNA 213> Artificial Sequence	
<2 <2	220> 223> Oligonucleotide primer	
	100> 4 agg gatctctagt tacc	24
. <2 <2	210> 5 211> 23 212> DNA 213> Artificial Sequence	
<2 <2	220> 223> Oligonucleotide primer	
	400> 5 gcg ccactgctag aga	23
<: <:	210> 6 211> 24 212> DNA 213> Artificial Sequence	
	220> 223> Oligonucleotide primer	
	400> 6 tct ctccagcact agca	24
<	210> 7 211> 26 212> DNA 213> Artificial Sequence	

```
<220>
      <223> oligonucleotide primer
      ×400> 7
                                                                          26
gcgactagga gagatgggaa cacaca
      <210>
      <211> 28
      <212> DNA
      <213> Artinicial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 8
                                                                          26
cgccagcgtg gaccatcaag tagtaa
      <210> 9
      <211> 26
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 9
                                                                          26
cacgatectg gageagaeae tgaaga
      <210> 10
      <211> 25
      <212> DNA
      <213> Artificial Sequence
      <223> Oligonucleotide primer
      <400> 10
                                                                          25
gggagagcca tagtggtctg cggaa
      <210> 11
      <211> 24
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 11
```

cāā; . /	ggcactc gcaagcaccc tatc	24
`	<210> 12	
	211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	222	
	<220> <223> Oligonucleotide primer	
	22233 01190nuc16661u6 F1-m-	
	<400> 12	27
cct	ttcgcga cccaacacta ctcggct	21
	<210 > 13	
	<211> 22 <212> DNA	
	<212> DNA <213> Artificial Sequence	
\bigcap	. (S13) Wight and and	
/ 1/	<220>	
1 1	<223> Oligonucleotide primer	
17		
•	<400> 13	22
caa	acagacgg gcacacacta ct	
	<210> 14	
•	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Oligonucleotide primer	
	<400> 14	
CC	acgettge ttgettaaag acete	25
CCe		
	<210> 15	
•	<211> 150	
	<212> DNA \	
٠	<213> Artificial Sequence	
•	<220>	
	<223> target nucleic acid for an internal positive	
	control	
	<400> 15	\ 60
cg	ccagcgtg gaccatcaag tagtaatgaa cgcacggacg aggacatcat agagattaca	120
CC	tttatcca cagttctcgg tctaacgcag cagtcagtgt atcagcacca gcatccgtag	150
+~	eachathaa afararaacea caddalcata	

```
<210> 16
      <211> 22
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223 Oligonucleotide primer
      <400> 16
gaacagatgg gcacacactg ct
                                                                        22
      <210> 17
      <211> 30
      <212> DNA
      <213> Artificial Sequence
      <220>
      <223> Oligonucleotide primer
      <400> 17
                                                                        30
ctgcgttaga ccgagaactg tggataaagg
```